Department of Relativistic Astrophysics and Cosmology
 
 
Selected publications
 
   
   
   
    from to   type  
  results per page (106 results)  

[<] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [>] [>>]

67. Marek Szydlowski, Wojciech Czaja
Particle-Like Description in Quintessential Cosmology
Phys. Rev., vol. D69, p. 083518 (2004).
[abstract] [preprint] [journal]

Abstract:
Assuming equation of state for quintessential matter: $p=w(z)\rho$, we analyse dynamical behaviour of the scale factor in FRW cosmologies. It is shown that its dynamics is formally equivalent to that of a classical particle under the action of 1D potential $V(a)$. It is shown that Hamiltonian method can be easily implemented to obtain a classification of all cosmological solutions in the phase space as well as in the configurational space. Examples taken from modern cosmology illustrate the effectiveness of the presented approach. Advantages of representing dynamics as a 1D Hamiltonian flow, in the analysis of acceleration and horizon problems, are presented. The inverse problem of reconstructing the Hamiltonian dynamics (i.e. potential function) from the luminosity distance function $d_{L}(z)$ for supernovae is also considered.

68. Marek Szydlowski, Wojciech Czaja
Stability of FRW cosmology with a generalized Chaplygin gas
Phys. Rev., vol. D69, p. 023506 (2004).
[abstract] [preprint] [journal]

Abstract:
We apply methods of dynamical systems to study the behavior of a universe dominated by the generalized Chaplygin gas. We reduce the dynamics to a two-dimensional Hamiltonian system and study its behavior for various ranges of parameters. The dynamics is studied on the phase plane by using methods of a qualitative analysis of differential equations. The behavior of trajectories at infinity is studied in some convenient coordinates introduced on the phase plane. Hence we show that the Friedmann-Robertson-Walker model with the generalized Chaplygin gas is structurally stable. We clearly find the domains of cosmic acceleration as well as conditions for which the horizon problem is solved. We also define some general class of fluids which generalize the Chaplygin gas. The dynamics of such models in terms of energy conditions is also discussed.

69. Marek Szydlowski, Wojciech Czaja
Toward reconstruction of the dynamics of the Universe from distant type Ia supernovae
Phys. Rev., vol. D69, p. 083507 (2004).
[abstract] [preprint] [journal]

Abstract:
We demonstrate a model-independent method of estimating qualitative dynamics of an accelerating universe from observations of distant type Ia supernovae. Our method is based on the luminosity-distance function, optimized to fit observed distances of supernovae, and the Hamiltonian representation of dynamics for the quintessential universe with a general form of equation of state $p=w(a(z))\rho$. Because of the Hamiltonian structure of FRW dynamics with the equation of state $p = w(a(z)) \rho$, the dynamics is uniquelly determined by the potential function $V(a)$ of the system. The effectiveness of this method in discrimination of model parameters of Cardassian evolution scenario is also given. Our main result is the following, restricting to the flat model with the current value of $\Omega_{m,0}=0.3$, the constraints at $2\sigma$ confidence level to the presence of $\rho^{n}$ modification of the FRW models are $-0.50 \lesssim n \lesssim 0.36$.

70. P. Bizoń, S. J. Szybka, A. Wassserman
Periodic self-similar wave maps coupled to gravity
Phys. Rev. D, vol. 69, p. 064014 (2004).
[abstract] [preprint] [journal]

Abstract:
We continue our studies of spherically symmetric self-similar solutions in the SU(2) sigma model coupled to gravity. Using mixed numerical and analytical methods we show existence of an unstable periodic solution lying at the boundary between the basins of two generic attractors.

71. S. J. Szybka
Chaotic self-similar wave maps coupled to gravity
Phys. Rev. D, vol. 69, p. 084014 (2004).
[abstract] [preprint] [journal]

Abstract:
We continue our studies of spherically symmetric self-similar solutions in the SU(2) sigma model coupled to gravity. For some values of the coupling constant we present numerical evidence for the chaotic solution and the fractal threshold behavior. We explain this phenomenon in terms of horseshoe-like dynamics and heteroclinic intersections.

72. G. Magnano, L. M. Sokolowski
Nonlinear massive spin-two field generated by higher derivative gravity
Annals Phys., vol. 306, pp. 1-36 (2003).
[abstract] [preprint]

Abstract:
We present a systematic exposition of the Lagrangian field theory for the massive spin-two field generated in higher-derivative gravity. It has been noticed by various authors that this nonlinear field overcomes the well known inconsistency of the theory for a linear massive spin-two field interacting with Einstein's gravity. Starting from a Lagrangian quadratically depending on the Ricci tensor of the metric, we explore the two possible second-order pictures usually called "(Helmholtz-)Jordan frame" and "Einstein frame". In spite of their mathematical equivalence, the two frames have different structural properties: in Einstein frame, the spin-two field is minimally coupled to gravity, while in the other frame it is necessarily coupled to the curvature, without a separate kinetic term. We prove that the theory admits a unique and linearly stable ground state solution, and that the equations of motion are consistent, showing that these results can be obtained independently in either frame. The full equations of motion and the energy-momentum tensor for the spin--two field in Einstein frame are given, and a simple but nontrivial exact solution to these equations is found. The comparison of the energy-momentum tensors for the spin-two field in the two frames suggests that the Einstein frame is physically more acceptable. We point out that the energy-momentum tensor generated by the Lagrangian of the linearized theory is unrelated to the corresponding tensor of the full theory. It is then argued that the ghost-like nature of the nonlinear spin-two field, found long ago in the linear approximation, may not be so harmful to classical stability issues, as has been expected.

[<] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [>] [>>]