Department of Relativistic Astrophysics and Cosmology
 
 
Selected publications
 
   
   
   
    from to   type  
  res per page (104 res)  

[<] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [>] [>>]

7. Sebastian J. Szybka
Równania Einsteina i efekt niejednorodności w kosmologii
W ,,Ogólna teoria względności a filozofia - sto lat interakcji'', red. P. Polak, J. Mączka, CCPress, pp. 127-142 [journal]

Abstract:

8. Bratek Ł., Sikora S., Jałocha J., Kutschera M.
Velocity-density twin transforms in the thin disk model
Mon. Not. R. Astron. Soc. , vol. 451, p. 4018 (2015).
[abstract] [preprint] [journal]

Abstract:
Ring mass density and the corresponding circular velocity in thin disc model are known to be integral transforms of one another. But it may be less familiar that the transforms can be reduced to one-fold integrals with identical weight functions. It may be of practical value that the integral for the surface density does not involve the velocity derivative, unlike the equivalent and widely known Toomre's formula.

9. Jałocha J., Bratek Ł., Sikora S., Kutschera M.
Modelling vertical structure in circular velocity of spiral galaxy NGC 4244
Mon. Not. R. Astron. Soc. , vol. 451, p. 3366 (2015).
[abstract] [preprint] [journal]

Abstract:
We study the vertical gradient in azimuthal velocity of spiral galaxy NGC 4244 in a thin disc model. With surface density accounting for the rotation curve, we model the gradient properties in the approximation of quasi-circular orbits. It is worthy to note that the prediction of our model is consistent with the gradient properties inferred recently from a numerical model implementing the position-velocity diagram of this galaxy. The confirmation of our prediction by the future measurement of the gradient would provide support for the expectation that the mass distribution in this galaxy is flattened.

10. Sikora S., Bratek Ł., Jałocha J., Kutschera M.
Motion of halo tracer objects in the gravitational potential of a low-mass model of the Galaxy
Astron. Astrophys. , vol. 579, p. A134 (2015).
[abstract] [preprint] [journal]

Abstract:
Recently, we determined a lower bound for the Milky Way mass in a point mass approximation. We obtain this result for most general spherically symmetric phase-space distribution functions consistent with a measured radial velocity dispersion. As a stability test of these predictions against a perturbation of the point mass potential, in this paper we make use of a representative of these functions to set the initial conditions for a simulation in a more realistic potential of similar mass and to account for other observations. The predicted radial velocity dispersion profile evolves to forms still consistent with the measured profile, proving structural stability of the point mass approximation and the reliability of the resulting mass estimate of ~2.1 × 10^11 M⊙ within 150 kpc. As a byproduct, we derive a formula in the spherical symmetry relating the radial velocity dispersion profile to a directly measured kinematical observable.

11. Edited by James Ladyman, Stuart Presnell, Gordon McCabe, Michał Eckstein, Sebastian J. Szybka
Road to Reality with Roger Penrose
CCPress [abstract] [preprint] [journal]

Abstract:
Where does the road to reality lie? This fundamental question is addressed in this collection of essays by physicists and philosophers, inspired by the original ideas of Sir Roger Penrose. The topics range from black holes and quantum information to the very nature of mathematical cognition itself.

12. A. Woszczyna, W. Czaja, K. Głód, Z. A. Golda, R. A. Kycia, A. Odrzywołek, P. Plaszczyk, L. M. Sokołowski, S. J. Szybka
ccgrg: The symbolic tensor analysis package with tools for general relativity
Wolfram Library Archive, vol. 8848 (2014).
[abstract] [journal]

Abstract:
Riemann and Weyl curvature, covariant derivative, Lie derivative, the first and the second fundamental form on hyper-surfaces, as well as basic notions of relativistic hydrodynamics (expansion, vorticity, shear) are predefined functions of the package. New tensors are easy to define. Instructions, basic examples, and some more advanced examples are attached to the package. Characteristic feature of the ccgrg package is the specific coupling between the functional programming and the Parker-Christensen index convention. This causes that no particular tools to rising/lowering tensor indices neither to the tensor contractions are needed. Tensor formulas are written in the form close to that of classical textbooks in GRG, with the only difference that the summation symbol appears explicitly. Tensors are functions, not matrixes, and their components are evaluated lazily. This means that only these components which are indispensable to realize the final task are computed. The memoization technique prevents repetitive evaluation of the same quantities. This saves both, time and memory.

[<] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [>] [>>]